Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Diacetato- $\kappa^{2} O$-bis[(S)-1-(4-fluoro-phenyl)ethylamine- κN]palladium(II) and di- μ-acetato- $\kappa^{4} O: O^{\prime}-$
 bis\{[(S)-2-(1-aminoethyl)-5-fluoro-phenyl- $\kappa^{2} C^{1}, N$]palladium(II)\} benzene hemisolvate

Beatrice Calmuschi, Alexander Erik Jonas and Ulli Englert*

Institute of Inorganic Chemistry, RWTH Aachen University, Prof.-Pirlet-Straße 1, 52074 Aachen, Germany
Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de
Received 8 March 2004
Accepted 4 May 2004
Online 22 June 2004
Complexes of the composition trans $-\left[\mathrm{Pd}(L)_{2}(\mathrm{OAc})_{2}\right]$ have been postulated as intermediates during cyclopalladation. The first structural characterization of such a precursor has now been achieved and its role in the reaction sequence has been established. Diacetato- $\kappa^{2} O$-bis $[(S)-1-(4-f l u o r o p h e n y l)-$ ethylamine $-\kappa N]$ palladium $(\mathrm{II}),\left[\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\left(4-\mathrm{FC}_{6} \mathrm{H}_{3} \mathrm{CHMe}-\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right)_{2}\right]$ or $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{FN}\right)_{2}\right]$, (I), was obtained from palladium(II) acetate and (S) $-\mathrm{NH}_{2} \mathrm{CHMeC}_{6} \mathrm{H}_{3} \mathrm{~F}-4$ in a $1: 2$ molar ratio. The intermediate was then reacted with additional palladium(II) acetate to give the acetate-bridged dinuclear complex di- μ-acetato- $\kappa^{4} O: O^{\prime}$-bis $\{[(S)$-2-(1-aminoethyl)-5-fluorophenyl- $\left.\kappa^{2} C^{1}, N\right]$ palladium(II) $\}$ benzene hemisolvate, $[\mathrm{Pd}-$ $\left.\left(4-\mathrm{FC}_{6} \mathrm{H}_{3} \mathrm{CHMeNH}_{2}\right)_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ or $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}-\right.\right.$ $\left.\mathrm{N})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$, (II).

Comment

The reaction of palladium(II) acetate and benzylamines under certain conditions results in the formation of a five-membered metallocycle, with the metal coordinated to both the amino N atom and the ortho C atom of the aromatic ring. Ryabov (1990) first postulated that this special case of orthometallation, often called cyclopalladation (Cope \& Friedrich, 1968), proceeds via formation of an intermediate trans-bis(acetato)bis(amine ligand) complex. Our interest in building blocks for quasi-racemic crystals (Englert et al., 2000, 2002; Kalf et al., 2002; Reemers \& Englert, 2002) induced us to study this reaction. In this context, we have recently performed a structural study of this pathway for primary amines (Calmuschi \& Englert, 2002), a relatively new class of substrates for cyclopalladation (Calmuschi et al., 2004).

(I)
(II)

Vicente et al. (1997) infringed the historical second rule of Cope \& Friedrich (1968) by cyclopalladating primary amines which even contained electron-withdrawing substituents on the aryl ring. They confirmed Ryabov's theory about the intermediate bis(ligand) complex and reported NMR data for this class of compounds. We have now achieved the isolation and structural characterization of the first trans $-\left[\operatorname{Pd}(L)_{2^{-}}\right.$

Figure 1
A view of the two independent molecules in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and selected H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
$(\mathrm{OAc})_{2}$] precursor complex: the reaction between palladium(II) acetate and (S)-1-(4-fluorophenyl)ethylamine in a 1:2 molar ratio gives $\left[\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\left(4-\mathrm{FC}_{6} \mathrm{H}_{3} \mathrm{CHMeNH}_{2}\right)_{2}\right]$, (I). The reaction pathway is shown in the scheme above.

To the best of our knowledge, only one other $\mathrm{Pd}^{\mathrm{II}}$ compound containing terminal acetate ligands and primary

Figure 2
A view of the molecule of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and selected H atoms are shown as small spheres of arbitrary radii. The benzene solvent molecule has been omitted for clarity.

Figure 3
A view of the hydrogen-bonding interactions in (II).
amines has been reported to date. That dinuclear complex represents a second intermediate in the cyclopalladation pathway and was separated and fully characterized by Vicente et al. (1997).

Complex (I) crystallizes in the monoclinic space group $P 2_{1}$. The asymmetric unit contains two molecules of quite similar conformation, with the acetate groups and the H atoms of the amine N atom directed to the same face of the coordination plane (Fig. 1). The symmetrically independent molecules approach each other in a face-to-face fashion, hence interacting via two pairs of hydrogen bridges, each pair between an amine NH_{2} donor and uncoordinated acetate O atoms as acceptors. This conformation is probably stabilized by the intermolecular interactions and is therefore limited to the solid state. Table 2 gives geometric information for the hydrogen bonds in (I).

In terms of intramolecular geometry, complex (I) may best be compared with bis(acetato- O)bis(diethylamine- N)palladium(II). This mononuclear square-planar $\mathrm{Pd}^{\mathrm{II}}$ complex, with two monodentate acetate and two secondary amine ligands coordinated to the metal in a trans geometry (Kravtsova et al., 1996), exhibits metal-ligand distances similar to those observed in (I). Due to the different hydrogen-bond donor-acceptor balance, this kind of interaction is limited to just one intramolecular hydrogen bond in the asymmetric unit of the centrosymmetric complex.

Further reaction of (I) with palladium(II) acetate results in the formation of $\left[\left\{\mathrm{Pd}\left(4-\mathrm{FC}_{6} \mathrm{H}_{3} \mathrm{CHMeNH}_{2}\right)_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]\right.$, (II), thus proving the role of (I) as the primary intermediate in cyclopalladation. The orthometallated complex (II) crystallizes from benzene with 0.5 equivalents of solvent; the benzene molecules occupy the twofold axes in space group C2. The geometry of this acetate dimer corresponds to the inner isomer, with both methyl groups attached at the chiral atom pointing towards each other (Fig. 2). The $\mathrm{Pd} \cdots \mathrm{Pd}$ distance is 2.8733 (10) \AA, slightly shorter than in the dinuclear complex of the unsubstituted amine ligand (Calmuschi \& Englert, 2002). A two-dimensional network of hydrogen bonds in the $a b$ plane is formed in (II) (Fig. 3). Table 4 gives details of the intermolecular hydrogen bonds. Complexes (I) and (II) both exhibit rather weak non-classical intermolecular hydrogen bonds.

Experimental

$\mathrm{Pd}(\mathrm{OAc})_{2}$ and $(S)-\mathrm{NH}_{2} \mathrm{CHMeC}_{6} \mathrm{H}_{3} \mathrm{~F}$-4 were stirred in benzene in a molar ratio of 1:2 at room temperature for 2 h . The resulting mixture was filtered and the filtrate concentrated in vacuo. Addition of hexane afforded green-yellow crystals of the mononuclear intermediate complex (I) (yield 89%). This product underwent further reaction with an additional equivalent of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in benzene at 333 K for 1 d . The mixture was filtered and concentrated and the product, (II), was precipitated with hexane (yield 93%). Single crystals suitable for X-ray structure determination were obtained from solutions in a 1:1 benzene-hexane mixture. Alternatively, complex (II) may be obtained by reaction of equimolar amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $(\mathrm{S})-\mathrm{NH}_{2} \mathrm{CHMeC}_{6} \mathrm{H}_{3} \mathrm{~F}-4$ in refluxing acetonitrile for a period of 4 h .

Compound (I)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{FN}\right)_{2}\right]$
$M_{r}=502.83$
Monoclinic, $P 2_{1}$
$a=10.589$ (2) \AA
$b=17.537$ (3) A
$c=11.686$ (2) \AA
$\beta=100.954$ (3) ${ }^{\circ}$
$V=2130.6(7) \AA^{3}$
$Z=4$
$D_{x}=1.568 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART APEX
CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\min }=0.500, T_{\max }=0.577$
29128 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.061$
$S=1.06$
10628 reflections
531 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0388 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

Pd1-O11	$2.0192(15)$	O13-C120	$1.289(2)$
Pd1-O13	$2.0271(14)$	O23-C220	$1.298(2)$
Pd1-N12	$2.0409(16)$	O21-C218	$1.299(2)$
Pd1-N11	$2.0652(16)$	O11-C118	$1.299(2)$
Pd2-O23	$2.0144(14)$	O12-C118	$1.233(2)$
Pd2-O21	$2.0155(14)$	O24-C220	$1.235(2)$
Pd2-N21	$2.0507(16)$	O22-C218	$1.237(3)$
Pd2-N22	$2.0575(17)$	O14-C120	$1.243(3)$
O11-Pd1-O13	$174.33(6)$	O23-Pd2-O21	$174.96(6)$
O11-Pd1-N12	$89.55(6)$	O23-Pd2-N21	$89.13(6)$
O13-Pd1-N12	$87.67(6)$	O21-Pd2-N21	$87.98(6)$
O11-Pd1-N11	$91.22(6)$	O23-Pd2-N22	$91.23(6)$
O13-Pd1-N11	$91.83(6)$	O21-Pd2-N22	$91.77(7)$
N12-Pd1-N11	$176.65(7)$	N21-Pd2-N22	$178.36(7)$

Table 2
Hydrogen-bonding geometry ($\left(\AA,{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 14$	0.95	2.11	$2.867(2)$	136
$\mathrm{~N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 12$	0.95	2.15	$2.896(2)$	134
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 22$	0.95	2.16	$3.029(2)$	151
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{O} 24$	0.95	2.01	$2.923(2)$	161
$\mathrm{~N} 21-\mathrm{H} 21 A \cdots \mathrm{O} 12$	0.95	2.17	$3.040(2)$	151
N21-H21B \cdots O14	0.95	2.05	$2.956(2)$	160
N22-H22A $\cdots \mathrm{O} 24$	0.95	2.41	$2.930(2)$	114
N22-H22 $\cdots \mathrm{O} 22$	0.95	2.25	$2.892(2)$	124

Compound (II)

Crystal data

$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FN}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6} \quad D_{x}=1.794 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=646.27$
Monoclinic, C2
$a=22.504$ (5) \AA
$b=9.1632(19) \AA$
$c=12.279$ (3) A
$\beta=109.131$ (4) ${ }^{\circ}$
$V=2392.2(9) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 8096 reflections
$\theta=1.9-28.4^{\circ}$
$\mu=1.55 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Rod, yellow
$0.64 \times 0.10 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
area-detector diffractometer
φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.437, T_{\text {max }}=0.955$
12301 measured reflections
5876 independent reflections
5354 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-30 \rightarrow 30$
$k=-11 \rightarrow 12$
$l=-16 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.070$
$S=1.01$
5876 reflections
303 parameters
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0282 P)^{2}\right]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.002\)
\(\Delta \rho_{\max }=0.88 \mathrm{e}_{\mathrm{max}} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.80 \mathrm{e}^{-3}\)
Absolute structure: Flack (1983)
    with 2732 Friedel pairs
Flack parameter \(=-0.09(3)\)
```

Table 3
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

Pd1-C108	$1.965(5)$	$\mathrm{Pd} 2-\mathrm{O} 21$	$2.072(3)$
$\mathrm{Pd} 1-\mathrm{N} 1$	$2.020(4)$	$\mathrm{Pd} 2-\mathrm{O} 22$	$2.172(3)$
$\mathrm{Pd} 1-\mathrm{O} 12$	$2.065(3)$	$\mathrm{Pd} 2-\mathrm{Pd} 22^{\mathrm{i}}$	$3.1494(9)$
$\mathrm{Pd} 1-\mathrm{O} 11$	$2.139(3)$	$\mathrm{O} 11-\mathrm{C} 210$	$1.259(5)$
$\mathrm{Pd} 1-\mathrm{Pd} 2$	$2.8717(7)$	$\mathrm{O} 21-\mathrm{C} 210$	$1.259(5)$
$\mathrm{Pd} 2-\mathrm{C} 208$	$1.944(4)$	$\mathrm{O} 22-\mathrm{C} 110$	$1.265(5)$
$\mathrm{Pd} 2-\mathrm{N} 2$	$2.042(4)$	$\mathrm{O} 12-\mathrm{C} 110$	$1.272(5)$
			$82.62(18)$
$\mathrm{C} 108-\mathrm{Pd} 1-\mathrm{N} 1$	$83.00(18)$	$\mathrm{C} 208-\mathrm{Pd} 2-\mathrm{N} 2$	$94.42(17)$
$\mathrm{C} 108-\mathrm{Pd} 1-\mathrm{O} 12$	$94.32(17)$	$\mathrm{C} 208-\mathrm{Pd} 2-\mathrm{O} 21$	$177.03(14)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{O} 12$	$177.14(14)$	$\mathrm{N} 2-\mathrm{Pd} 2-\mathrm{O} 21$	$173.12(16)$
$\mathrm{C} 108-\mathrm{Pd} 1-\mathrm{O} 11$	$175.70(19)$	$\mathrm{C} 208-\mathrm{Pd} 2-\mathrm{O} 22$	$92.04(13)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{O} 11$	$92.76(15)$	$\mathrm{N} 2-\mathrm{Pd} 2-\mathrm{O} 22$	$90.93(13)$
$\mathrm{O} 12-\mathrm{Pd} 1-\mathrm{O} 11$	$89.90(13)$	$\mathrm{O} 21-\mathrm{Pd} 2-\mathrm{O} 22$	

Symmetry code: (i) $2-x, y, 2-z$.

Table 4
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 12^{\mathrm{i}}$	0.95	2.06	$2.947(5)$	155
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 22^{\mathrm{ii}}$	0.95	2.02	$2.877(5)$	149

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, 2-z$; (ii) $2-x, y, 2-z$.

H atoms were introduced in idealized positions $(\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.95 \AA$) and refined as riding.

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the DFG ('Methods in asymmetric synthesis') is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1048). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Calmuschi, B., Alesi, M. \& Englert, U. (2004). Dalton Trans. In the press.
Calmuschi, B. \& Englert, U. (2002). Acta Cryst. C58, m545-m548.

Cope, A. C. \& Friedrich, E. C. (1968). J. Am. Chem. Soc. 90, 909-913.
Englert, U., Haering, A., Hu, C. \& Kalf, I. (2002). Z. Anorg. Allg. Chem. 628, 1173-1179.
Englert, U., Haerter, U., Hu, C., Kalf, I. \& Zheng, X. (2000). Z. Kristallogr. 215, 627-631.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kalf, I., Calmuschi, B. \& Englert, U. (2002). CrystEngComm, 4, 548-551.
Kravtsova, S. V., Romm, I. P., Stash, A. I. \& Belsky, V. K. (1996). Acta Cryst. C52, 2201-2204.
Reemers, S. \& Englert, U. (2002). Inorg. Chem. Commun. 5, 829-831.
Ryabov, A. D. (1990). Chem. Rev. 90, 403.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Vicente, J., Saura-Llamas, I., Palin, M. G., Jones, P. G. \& Ramirez de Arellano, M. C. (1997). Organometallics, 16, 826-833.

